p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury.

نویسندگان

  • Istvan Arany
  • Amir Faisal
  • Jeb S Clark
  • Trinity Vera
  • Radhakrishna Baliga
  • Yoshikuni Nagamine
چکیده

Mitochondrial dysfunction is involved in pathopysiology of ischemia-reperfusion-induced acute kidney injury (AKI). The p66shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction, which might play a role in AKI-induced renal tubular injury. Oxidative stress-mediated Serine36 phosphorylation of p66shc facilitates its transportation to the mitochondria where it oxidizes cytochrome c and generates excessive amount of reactive oxygen species (ROS). The consequence is mitochondrial depolarization and injury. Earlier we determined that p66shc plays an essential role in injury of cultured mouse renal proximal tubule cells during oxidative stress. Here, we studied the role of p66shc in ROS generation and consequent mitochondrial dysfunction during oxidative injury in renal proximal tubule cells. We employed p66shc knockdown renal proximal tubule cells and cells that overexpress wild-type, Serine phosphorylation (S36A), or cytochrome c-binding (W134F) mutants of p66shc. Inhibition of the mitochondrial electron transport chain or the mitochondrial permeability transition revealed that hydrogen peroxide-induced injury is mitochondrial ROS and consequent mitochondrial depolarization dependent. We also found that through Ser36 phosphorylation and mitochondria/cytochrome c binding, p66shc mediates those effects. We propose a similar mechanism in vivo as we demonstrated mitochondrial binding of p66shc as well as its association with cytochrome c in the postischemic kidneys of mice. Thus, manipulating p66shc might offer a new therapeutic modality to ameliorate renal ischemic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of p66shc in renal toxicity of oleic acid.

BACKGROUND/AIMS Adult and childhood obesity is an independent risk factor in development of chronic kidney disease (CKD) and its progression to end-stage kidney disease. Pathologic consequences of obesity include non-esterified fatty acid-induced oxidative stress and consequent injury. Since the serine36-phosphorylated p66shc is a newly recognized mediator of oxidative stress and kidney injury,...

متن کامل

Epigenetic modifiers exert renal toxicity through induction of p66shc.

BACKGROUND/AIMS Trichostatin A (TSA) and 5-azacytidine (5AZA) induce reactive oxygen species (ROS)-mediated injury in renal proximal tubule cells. Since TSA and 5AZA are activators of p66shc, we questioned whether p66shc may mediate renal toxicity of TSA- and 5AZA. MATERIALS AND METHODS Renal proximal tubule cells were treated with either TSA or 5AZA for 24 hours followed by treatment with 20...

متن کامل

Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc.

BACKGROUND Chronic nicotine (Ch-NIC) exposure exacerbates ischemia/reperfusion (I/R)-induced oxidative stress and acute kidney injury (AKI), and mitochondrial production of reactive oxygen species (ROS) in cultured renal proximal tubule cells (RPTCs). Because Ser36-phosphorylated p66shc modulates mitochondrial ROS production and injury of RPTCs, we hypothesized that Ch-NIC exacerbates AKI by in...

متن کامل

p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway.

p66Shc, a promoter of apoptosis, modulates oxidative stress response and cellular survival, but its role in the progression of diabetic nephropathy is relatively unknown. In this study, mechanisms by which p66Shc modulates high-glucose (HG)- or angiotensin (ANG) II-induced mitochondrial dysfunction were investigated in renal proximal tubular cells (HK-2 cells). Expression of p66Shc and its phos...

متن کامل

The role of p66shc in taxol- and dichloroacetic acid-dependent renal toxicity.

BACKGROUND/AIM Taxol and dichloroacetic acid (DCA) are anticancer agents with potential renal toxicity. Previously, we have shown that the Ser36-phosphorylated p66shc adaptor protein mediates renal toxicity of selected anticancer modalities through increasing production of intracellular reactive oxygen species and consequent mitochondrial depolarization. Here, we analyzed whether p66shc plays a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 298 5  شماره 

صفحات  -

تاریخ انتشار 2010